Patch Pumps for Insulin Delivery

Timothy Bailey, MD, FACE, CPI
President & CEO, AMCR Institute
Clinical Associate Professor,
UCSD School of Medicine
Disclosures

• **Research Support**: Abbott, Ambra, Ascensia, BD, Boehringer Ingelheim, Calibra Medical, Companion Medical, Dance Biopharm, Dexcom, Eli Lilly, Glooko, Glysens, Kowa, Lexicon, MannKind, Medtronic, Novo Nordisk, sanofi, Senseonics, Taidoc, Versartis, Xeris

• **Consulting Honoraria**: Abbott, Astra Zeneca, Ascensia, BD, Calibra, Capillary Biomedical, Eli Lilly, Intarcia, Medtronic, Novo Nordisk, Sanofi

• **Speaking Honoraria**: Abbott, Eli Lilly, Medtronic, Novo Nordisk, Sanofi
Diabetes (simplified...)

Know Glucose

Eating? Exercise? Emotion? Other?

Do the right things

repeat, repeat
Mitigating the A1c – Hypo Tradeoff

![Graph showing the relationship between severe hypoglycemia and retinopathy across different HbA1c levels for intensive and conventional treatment groups.](image-url)
Can Technology Change the Curve?
Better Insulin; Better Monitoring

Lower risk of hypoglycemia for insulin glargine vs NPH at any level of HbA1c in T1DM

Meta-analysis of 5 randomized trials comparing insulin glargine and NPH in HbA1c in T1DM

Rate of hypoglycemia (events per patients/year)

Glargine
NPH

P=0004

HbA1c (%; LOCF)

HbA1c

Risks

Hypoglycemia
Complications
w/CGM

AMCR INSTITUTE
Insulin Delivery Options

vs.
Patch Pump Positioning

• “Untethered”
 – Tubing is a logistical consideration
• Where should the UI (user interface) go?
 – Dedicated controller vs. Phone (vs. Patch itself)
• Where should the “brain” (controller) be?
 – Increased importance for APS
• What should be the body interface be?
• Can a sensor be integrated?
UK T1 Pump Real-World Data

Greater HbA1c Lowering with Tethered vs. Small Insulin Pumps in a Large Insulin Pump Service

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Initial HbA1c range (mol/mol (%))</th>
<th>Baseline HbA1c</th>
<th>6 months HbA1c</th>
<th>p vs baseline</th>
<th>12 months HbA1c</th>
<th>p vs baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tethered (n=509)</td>
<td>All starting values</td>
<td>71±0.7</td>
<td>63±0.6*</td>
<td><0.001</td>
<td>65±0.7'</td>
<td><0.001</td>
</tr>
<tr>
<td>Small (n=85)</td>
<td>≥ 69 (85%)</td>
<td>71±0.9</td>
<td>70±1.6</td>
<td>NS</td>
<td>69±1.6</td>
<td>NS</td>
</tr>
<tr>
<td>Tethered (n=273)</td>
<td></td>
<td>83±0.7</td>
<td>69±0.8**</td>
<td><0.001</td>
<td>71±0.9'</td>
<td><0.001</td>
</tr>
<tr>
<td>Small (n=43)</td>
<td></td>
<td>83±2.3</td>
<td>77±2</td>
<td><0.05</td>
<td>77±2.1</td>
<td><0.05</td>
</tr>
<tr>
<td>Tethered (n=132)</td>
<td>59-68 (7.5-8.4%)</td>
<td>64±0.2</td>
<td>59±0.7**</td>
<td><0.001</td>
<td>59±0.8*</td>
<td><0.001</td>
</tr>
<tr>
<td>Small (n=28)</td>
<td></td>
<td>64±0.5</td>
<td>66±1.4</td>
<td>NS</td>
<td>64±1.4</td>
<td>NS</td>
</tr>
</tbody>
</table>

Data shown as mean±SEM. * p<0.05, ** p<0.001 for tethered vs small.
Patch Pump Types

- “Semi-Patch” (i.e. short tubing)
 - Cell Novo
 - Kaleido
 - t:sport (Tandem)
 - Lilly (DEKA)

- Infusion set flexibility?

- Patch (NO tubing)
 - Omnipod
 - YpsoPod
 - Terumo
 - Evopump (Cam Med)
 - EOPatch (EOFlow)
 - Jewel
 - Solo
 - P6 EasyPatch
 - *CeQur
 - *V-Go
 - *Swatch (BD)
 - *One Touch Via (J&J) – bolus only

*= targets T2 DM
J&J Via

- Bolus only
 - 2 units / click
- Subjects and HCPs preferred
- Improved (vs pen)
 - subject experience
 - treatment satisfaction
 - QoL associated
- Same A1c / hypo
- Same insulin doses

ADA 2018
cellnovo

- Durable/disposable components
- Cell network connectivity
- Exercise tracker
- Integrated BGM / controller
Kaleido

- Colorful
- Friendly UI
- Rechargable
Omnipod – U500
Study Design

People with T2D:
- Age 18-85 years
- BMI 25-50 kg/m²
- A1C ≥7.5 to <12.0%
- TDD >200 to ≤600 U

Transition to U-500R by MDI 40:30:30

U-500R MDI (3x/d)

U-500R CSII

1:1 randomization

Treatment period

2 Weeks

26 Weeks
Vivid Study

U-500R by CSII and MDI led to significant A1C reduction from baseline

CSII led to a significantly greater A1C reduction compared to MDI at Week 26

<table>
<thead>
<tr>
<th></th>
<th>A1C change (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDI</td>
<td>-0.85% ± 0.07%</td>
</tr>
<tr>
<td>CSII</td>
<td>-1.27% ± 0.07%</td>
</tr>
</tbody>
</table>

95% CI: (-0.62, -0.22%)
Vivid Study

CSII treatment led to greater A1C reduction with lower TDD compared to MDI.

No significant difference in documented symptomatic or severe hypoglycemia; CSII led to significantly higher rate of nocturnal hypoglycemia.
T2 Switched to Omnipod

- Retrospective (n=81)
- 3 month outcome after switch
 - MDI to Omnipod
- 46.2% reduction in hypos
 - 1.3 to 0.7 episodes/wk ($P = .004$)
Jewel Pump

- MEMS precise delivery
- 500U insulin for up to 7 days use.
- The disposable unit is filled once and discarded entirely after use (controller unit -2 years)
- Remotely controlled by the JewelCOM (Smartphone-PDA) – 3G cell
- Integrated BGM
- JewelPUMP2 – up to 800U insulin
V-Go

• 20, 30, or 40 Units of insulin in one 24-hour period (0.83 U/hr, 1.25 U/hr or 1.67 U/hr)
• Bolus dosing in 2 Unit increments (up to 36 Units per 24-hour time period).
Retrospective V-Go Study

<table>
<thead>
<tr>
<th>Baseline Characteristics</th>
<th>All Patients N=283</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male/Female</td>
<td>46% / 54%</td>
</tr>
<tr>
<td>Caucasian</td>
<td>222 (78)</td>
</tr>
<tr>
<td>African American</td>
<td>52 (18)</td>
</tr>
<tr>
<td>Other</td>
<td>9 (4)</td>
</tr>
<tr>
<td>Age, years</td>
<td>60 ± 11</td>
</tr>
<tr>
<td>Weight, lbs</td>
<td>221 ± 45</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>34.8 ± 6.7</td>
</tr>
<tr>
<td>A1C, %</td>
<td>9.2 ± 1.5</td>
</tr>
<tr>
<td>Insulin TDD, U/day</td>
<td>76 ± 47</td>
</tr>
<tr>
<td>Insulin TDD, U/day range</td>
<td>14 to 300</td>
</tr>
<tr>
<td>Basal-Bolus Insulin Regimen a</td>
<td>192 (68)</td>
</tr>
<tr>
<td>Basal Insulin Regimen</td>
<td>64 (23)</td>
</tr>
<tr>
<td>Premix Insulin Regimen</td>
<td>15 (5)</td>
</tr>
<tr>
<td>Other Insulin Regimens*</td>
<td>12 (4)</td>
</tr>
<tr>
<td>Insulin Injections, #/day</td>
<td>3.4 ± 1.4</td>
</tr>
<tr>
<td>Concomitant Meds**</td>
<td>220 (78)</td>
</tr>
<tr>
<td>Metformin</td>
<td>116 (41)</td>
</tr>
<tr>
<td>GLP-1 Receptor Agonist</td>
<td>80 (28)</td>
</tr>
<tr>
<td>SGLT-2 Inhibitor</td>
<td>61 (22)</td>
</tr>
<tr>
<td>DPP-4 Inhibitor</td>
<td>40 (14)</td>
</tr>
<tr>
<td>Sulfonylurea</td>
<td>35 (12)</td>
</tr>
<tr>
<td>Thiazolidinedione (TZD)</td>
<td>15 (5)</td>
</tr>
<tr>
<td>DPP-4 Inhibitor/Metformin</td>
<td>8 (3)</td>
</tr>
<tr>
<td>SGLT-2 Inhibitor/Metformin</td>
<td>9 (3)</td>
</tr>
</tbody>
</table>

Data are n (%) or mean ± SD unless otherwise noted.

*6 patients prescribed only 1 prandial injection (basal-plus)
*Prandial (n=5), Premix/Prandial (n=3), Basal/Premix (n=4)
**Concomitant meds prescribed in ≤ 1% of population not shown

Change in A1C (%) on V-Go
- 3 month: -1.01*
- 7 month: -1.04*

Change in TDD (U/day) on V-Go
- 3 month: -17 U*
- 7 month: -14 U*

% Achievement of A1C Targets
- Baseline
- On V-Go (7 months)

High Risk (A1C > 9%)
- < 7.0%
- < 8.0%
- ≤ 9.0%
- > 9.0%

N=283
*P<0.0001 compared to baseline
Duration rounded to month.

*P=0.001 compared to baseline
Achievement percentages for <7%, < 8% and ≤ 9% are cumulative & represent the total % of patients achieving each target threshold independently
Bioresponsive Core–Shell Microneedle Array Patch

APS Landscape- Patch Pumps

- Insulet
- Lilly
- CellNovo (DiabeLoop, TypeZero)
- EOPancreas
- SFC Fluidics
Practical Pearls

• **Pumps are better** insulin-delivery devices than pens/syringes
• Traditional pumps aren’t for everyone
 – Body real estate
 – Insulin capacity
 – Complexity
• Patch Pumps offer an alternative to expand pump benefits to more people who could benefit from pumps
• Patch Pumps may be preferred by PWD for APS